
MAJORCA

Multi-Architecture JOP and ROP Chain Assembler

Alexey Nurmukhametov
Alexey Vishnyakov
Vlada Logunova
Shamil Kurmangaleev

December 3, 2021

ISP RAS



Motivation

• Errors and vulnerabilities inevitably exist in all programs under
development.

• Modern exploits rely on code-reuse techniques as the last stage of
exploitation.

• It is crucial to understand how powerful code-reuse attacks can be.

• Mitigation techniques against them have to be thoroughly tested.

• Advanced tools for code-reuse attack generation provide a quality
estimation for defensive mechanisms.

1/20



Return-Oriented Programming

• Return-oriented programming (ROP) – an exploitation technique
that bypasses DEP (data execution prevention).

• Gadget – an instruction sequence that performs some calculations
and redirects control flow to another gadget, e.g. via ret instruction
at the end of the sequence.

• Gadgets have to be located in non-randomized memory regions.

3rd gadget address mov [edx], eax ; ret

memAddr

2nd gadget address pop edx ; ret

memValue

1st gadget address pop eax ; ret

B
ig
ge
r
ad
dr
es
se
s

2/20



MAJORCA Contributions

• The method to automatically generate both ROP and JOP payloads
in an architecture agnostic manner.

• The algorithm that considers restricted symbols in gadget addresses
and data.

• MAJORCA tool that generates both ROP and JOP chains for x86
and MIPS considering restricted symbols thoroughly.

• rop-benchmark that compares MAJORCA with open-source ROP
compilers.

• We define ROP chaining metric to estimate the probability of
successful ROP chaining for different OS with the portfolio of ROP
compilers.

3/20



MAJORCA Design

ROPGadget Binary

Classifier

gadgets

classified gadgets

JOP combining Filtering Prioritizing

MAJORCACatalog creation

D
A
G

ge
ne
ra
to
rs

User’s script
setting up
ROP chain

MoveChain
LoadDAG

(Sys)CallDAG
JumpDAG
StoreMemDAGScheduler

Considering
restricted symbols

ROP chain Human-readable ROP chain

4/20



Gadget Classification

• ROPgadget finds gadgets.

• Gadget types (boolean postconditions) define a new ISA.
• MoveRegG: OutReg ← InReg
• LoadConstG: OutReg ← [SP + Offset]

• Gadget classification finds out:
• Gadget types and their parameters.
• A list of clobbered registers (which values are not preserved after

gadget execution).
• Gadget frame info (frame size, an offset of next gadget address).

ROPgadget: github.com/JonathanSalwan/ROPgadget 5/20

https://github.com/JonathanSalwan/ROPgadget


Architecture Specific Description

• Chain generation algorithms are architecture agnostic.

• Architecture description contains:
• calling convention (which registers are arguments),
• numbers for system calls,
• registers that are used in chain.

6/20



Gadget Loading Values to Registers

• Classification finds out only gadgets that load value to single register.
• The key difference from Q1 – MAJORCA combines gadgets loading

many values to many registers.
LoadConst: POP RAX ; POP RDI ; POP RSI ; RET

LoadConst
RSI

RAX

RDI

1E. J. Schwartz et al. Q: exploit hardening made easy 7/20

https://www.usenix.org/legacy/event/sec11/tech/full_papers/Schwartz.pdf


Preprocessing of Gadgets

• JOP gadgets are combined with ROP gadgets.
• Resulting into an ordinary ROP gadget.
• pop rax ; pop rcx ; ret ; pop rdx ; jmp rcx — is same as

LoadConst: rax ← [SP], rdx ← [SP + 24] with frame size
FrameSize = 32 and the next gadget address by offset 8 (NextAddr
= [SP + 8]), where pop rdx ; jmp rcx gadget address has to be
placed by offset 16.

• Chain generation is a brute-force task.

• Gadgets are filtered, i.e., duplicates are removed and only the best
ones are used to construct the ROP chain.

• It is a task of searching for extremums in a partially ordered set.

• Gadgets are prioritized by quality.

• Special indexes are built to speed up requests for fetching gadgets of
particular type and parameters.

8/20



Directed Acyclic Graph (DAG) of Gadgets

LoadConst1: POP RAX ; POP RDI ; POP RSI ; RET
LoadConst2: POP RDI ; POP RBP ; RET
StoreMem : MOV [RDI], RBP ; RET
InitConst : XOR RDX, RDX ; RET

Syscall

LoadConst1

RDI

StoreMem LoadConst2
In

RBP

InitConst

RD
X

Addr
RDI

RAX

RSI

9/20



Gadgets DAG Scheduling

The schedule for DAG has to comply with the following:

• It has to be a topological sort of DAG.

• If gadget b uses the output register of gadget a, then this register
should not be clobbered by any gadgets in the schedule between a

and b.

a c b

10/20



Gadgets DAG Selection

• The task of generating move chains (moving value from one register
to another) is the task of finding a feasible path between graph
vertices:

• vertices – registers,
• egdes – gadgets.

• It is possible to load value to register a by loading it into register b
and then moving it to a by corresponding move chain.

• Value can be loaded into register as a result of arithmetic operation.

• Memory can be initialized by combination of following instructions:
• mov dword[eax], 0 ; ret ; add [eax], ebx ; ret

11/20



Loading Value from Stack to reg

MoveChain LoadConst
In

reg

MoveChain Arithmetic

MoveChain LoadConst
In

In2

MoveChain LoadConst
In

In1

In
reg

MoveChain Arithmetic

MoveChain InitConst
In

In2

MoveChain LoadConst
In

In1

In
reg

12/20



Storing Value to Memory

StoreMem LoadDAG
In

Addr

ArithStore

LoadDAG

Addr

InitMem LoadDAG
Addr

In

13/20



Registers Initialization

14/20



Registers Initialization

M
C

M
C

M
C

14/20



Registers Initialization

M
C

M
C

M
C

AR AR

14/20



Registers Initialization

M
C

M
C

M
C

AR AR

M
C

M
C

14/20



Registers Initialization

M
C

M
C

M
C

AR AR

M
C

M
C

IC IC IC

14/20



Registers Initialization

M
C

M
C

M
C

AR AR

M
C

M
C

IC IC IC

14/20



Registers Initialization

M
C

M
C

M
C

AR AR

M
C

M
C

IC IC IC

LC LC LC

14/20



Restricted Symbols Reasoning

• DAG of gadgets must not load (from stack) values containing
restricted symbols.

• We use the dynamic programming approach to calculate operands of
arithmetic operations (lv и rv), which do not contain restricted
symbols
lv + rv = value

• Two states: presence or absence of carry flag.

15/20



(Sys)Call DAG

• Support integers, strings, and arrays of them.

• StoreMem DAGs are created during arguments processing if
necessary.

• DAG generators for arguments consider calling convention.

• DAG is extended with vertices that perform (sys)calls.

16/20



ROP Benchmark Results (1 hour limit)

RO
Pg
ad
ge
t

Ro
pp
er

Ex
rop

an
gro
p

RO
Pi
um

M
AJ
OR
CA

0

20

40

60

80

100

120

2 3 0

10
18

43

4

15
11

25

43

66

8

31

48
54

64

90

7

53

76

86

103

124OpenBSD 6.4 (45/98/410)
OpenBSD 6.2 (67/87/397)
CentOS 7 (92/121/649)
Debian 10 (127/139/689)

OpenBSD developers intentionally decrease amount of ROP gadgets. 17/20



MAJORCA Evaluation with Restricted Symbols

Test suite OpenBSD 6.4 OpenBSD 6.2 Debian 10 CentOS 7
Number of files 410 397 689 649
Has syscall gadget 98 87 139 121
At least one OK 45 67 127 92
ROP chaining metric 0.46 0.77 0.91 0.76

Restricted symbols OK F TL OK F TL OK F TL OK F TL
None 43 1 1 66 0 1 124 1 0 90 1 0
slash – 2f 41 0 3 48 3 13 85 4 34 68 0 22

Other tools generate no workable payloads with restricted symbols.

ROP Benchmark: github.com/ispras/rop-benchmark 18/20

https://github.com/ispras/rop-benchmark


MAJORCA MIPS Evaluation

• Other tools do not support MIPS.

• 529 tests from 32-bit Malta Linux.

• All tests contain syscall.

• MAJORCA generates 112 successful ROP chains (OK).

• Unworkable ROP chains were not generated (F is 0).

• One timeout (TL is 1).

ROP Benchmark: github.com/ispras/rop-benchmark 19/20

https://github.com/ispras/rop-benchmark


ZSNES 1.51 Linux x86 32-bit, Restricted Symbols: /, \, \0

from struct import pack
fill = b’A’ # fill character
chain = pack(’<I’, 0x806719a) # POP EAX ; POP EDI ; RET
chain += pack(’<I’, 0x91969dd1)
chain += pack(’<I’, 0x834a860)
chain += pack(’<I’, 0x807e192) # NEG EAX ; POP EBX ; RET
chain += 4 * fill
chain += pack(’<I’, 0x808dbd5) # MOV DWORD PTR [EDI], EAX ; RET
chain += pack(’<I’, 0x806719a) # POP EAX ; POP EDI ; RET
chain += pack(’<I’, 0xff978cd1)
chain += pack(’<I’, 0x834a864)
chain += pack(’<I’, 0x807e192) # NEG EAX ; POP EBX ; RET
chain += 4 * fill
chain += pack(’<I’, 0x808dbd5) # MOV DWORD PTR [EDI], EAX ; RET
chain += pack(’<I’, 0x807945e) # POP EBX ; POP EAX ; RET
chain += pack(’<I’, 0x834a860)
chain += pack(’<I’, 0xf7c6d8f3)
chain += pack(’<I’, 0x805318e) # ADD EAX , 08392718h ; RET
chain += pack(’<I’, 0x80c6be5) # XOR ECX , ECX ; RET
chain += pack(’<I’, 0x81449a0) # XOR EDX , EDX ; RET
chain += pack(’<I’, 0x8066984) # INT 80h # execve(’/bin/sh’, 0, 0)



Questions?


	Приложение

